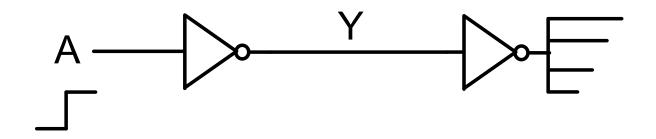

EE 330 Lecture 8

Stick Diagrams Technology Files

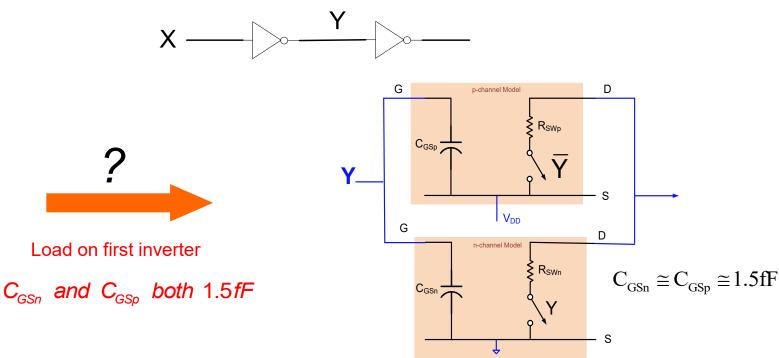
- Design Rules
- -Process Flow
- -Model Parameters

Response time of logic gates

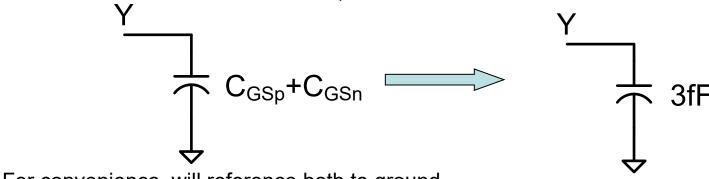


$$t_{_{\text{HL}}}\cong R_{_{\text{SWn}}}C_{_{\text{L}}}$$

$$t_{\scriptscriptstyle LH}\cong R_{\scriptscriptstyle SWp}C_{\scriptscriptstyle L}$$

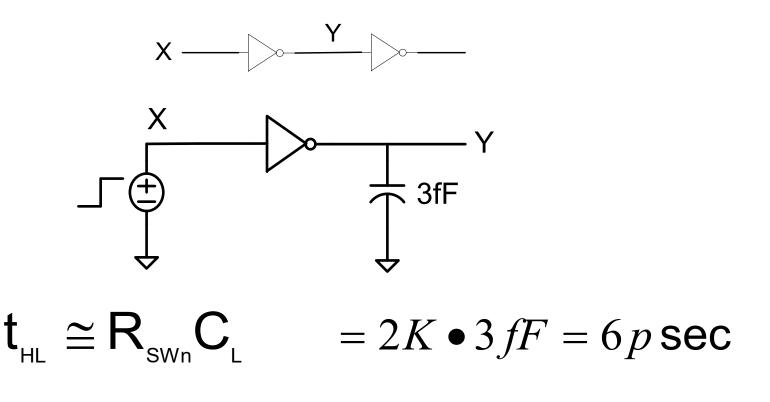

- Logic Circuits can operate very fast
- Extremely small parasitic capacitances play key role in speed of a circuit

One gate often drives one or more other gates!



What are t_{HL} and t_{LH} ?

Example: What is the delay of a minimum-sized inverter driving another identical device?

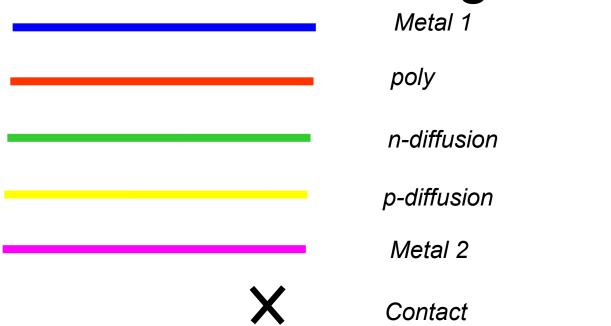


Loading effects same whether C_{GSp} and/or C_{GSn} connected to V_{DD} or GND

For convenience, will reference both to ground

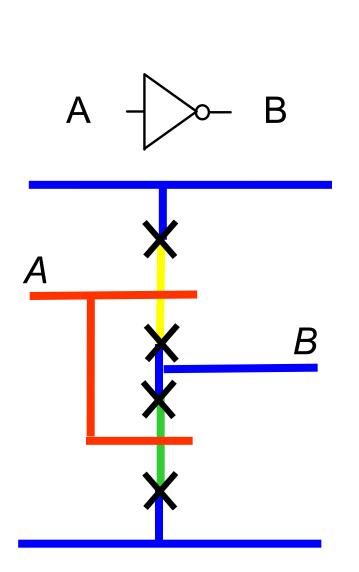
Example: What is the delay of a minimum-sized inverter driving another identical device?

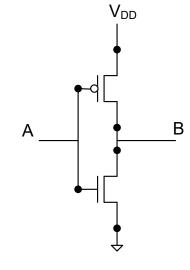
$$\mathbf{t}_{\text{\tiny LH}} \cong \mathbf{R}_{\text{\tiny SWp}} \mathbf{C}_{\text{\tiny L}} = 6K \bullet 3 fF = 18 p \sec \mathbf{C}$$


Do gates really operate this fast?

What would be the maximum clock rate for acceptable operation?

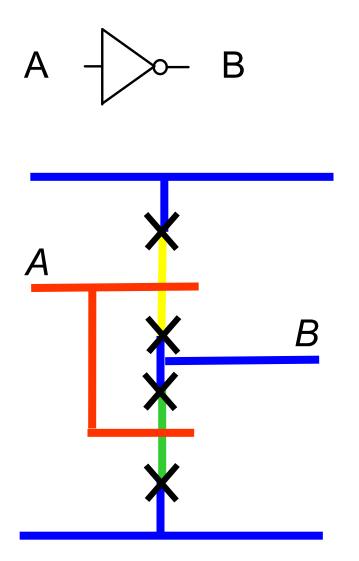
Stick Diagrams

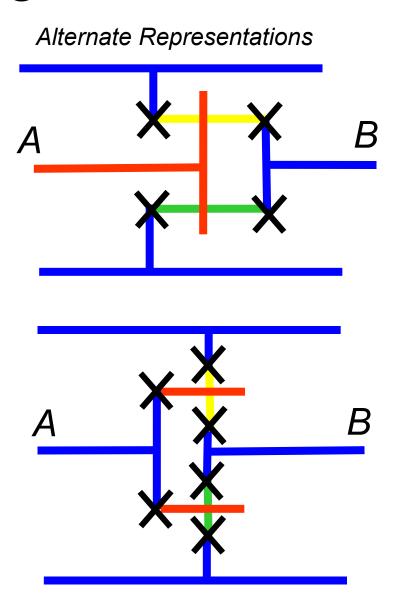

- It is often necessary to obtain information about placement, interconnect and physical-layer structure
- Stick diagrams are often used for small component-count blocks
- Approximate placement, routing, and area information can be obtained rather quickly with the use of stick diagrams


Stick Diagrams

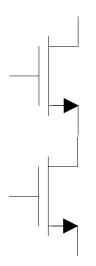
Additional layers can be added and color conventions are personal

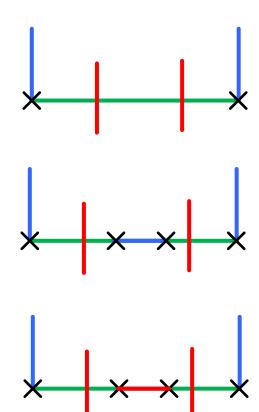
Stick Diagram

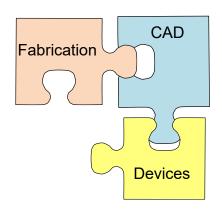



A stick diagram is not a layout but gives the basic structure (including location,, orientation and interconnects) that will be instantiated in the actual layout itself

Modifications can be made much more quickly on a stick diagram than on a layout


Iteration may be needed to come up with a good layout structure


Stick Diagram


Stick Diagram

- Source and drain notation suppressed
- Shared active can serve as interconnect
- No contact needed to shared active
- Multiple ways to layout even simple circuits

Technology Files

- Provide Information About Process
 - Design Rules
 - Process Flow (Fabrication Technology)
 - Model Parameters
- Serve as Interface Between Design Engineer and Process Engineer
- Insist on getting information that is deemed important for a design
 - Limited information available in academia
 - Foundries often sensitive to who gets access to information
 - Customer success and satisfaction is critical to foundries

Technology Files

Design Rules

- Process Flow (Fabrication Technology) (will discuss next)
- Model Parameters (will discuss in substantially more detail after device operation and more advanced models are introduced)

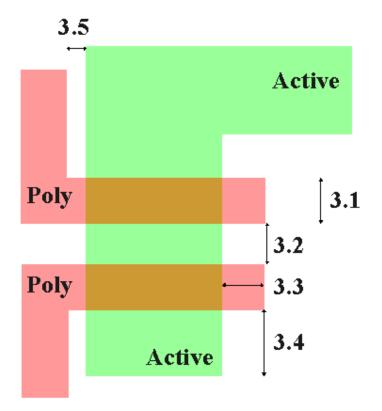
First – A preview of what the technology files look like!

Typical Design Rules

TABLE 2B.2
Design rules for a typical p-well CMOS process
(See Table 2B.3 in color plates for graphical interpretation)

	Dimensions	
	Microns	Scalable
. p-well (CIF Brown, Mask #1a)		
1.1 Width	5	4λ
1.2 Spacing (different potential)	15	10λ
1.3 Spacing (same potential)	9	6λ
. Active (CIF Green, Mask #2)		
2.1 Width	4	2λ
2.2 Spacing	4	2λ
2.3 p+ active in n-subs to p-well edge	8	6λ
2.4 n+ active in n-subs to p-well edge	7	5λ
2.5 n ⁺ active in p-well to p-well edge	4	2λ
2.6 p ⁺ active in p-well to p-well edge	1	λ
. Poly (POLY I) (CIF Red, Mask #3)		
3.1 Width	3	2λ
3.2 Spacing	3	2λ
3.3 Field poly to active	2	λ
3.4 Poly overlap of active	3	2λ
3.5 Active overlap of poly	4	2λ
. p ⁺ select (CIF Orange, Mask #4)		
4.1 Overlap of active	2 2	λ
4.2 Space to n+ active		λ
4.3 Overlap of channel ^b	3.5	2λ
4.4 Space to channel ^b	3.5	2λ
4.5 Space to p ⁺ select	3	2λ .
4.6 Width	3	2λ

Typical Design Rules (cont)


5 .	Conta	ct ^c (CIF Purple, Mask #6)		
	5.1	Square contact, exactly	3×3	$2\lambda \times 2\lambda$
	5.2	Rectangular contact, exactly	3×8	$2\lambda \times 6\lambda$
	5.3	Space to different contact	3	2λ
	5.4	Poly overlap of contact	2	λ
	5.5	Poly overlap in direction of metal 1	2.5	2λ
	5.6	Space to channel	3	2λ
	5.7	Metal 1 overlap of contact	2	λ
	5.8	Active overlap of contact	2	λ
	5.9	p+ select overlap of contact	3	2λ
	5.10	Subs./well shorting contact, exactly	3 × 8	$2\lambda \times 6\lambda$
6.	Metal	1 ^d (CIF Blue, Mask #7)		
	6.1	Width	3	2λ
	6.2	Spacing	4	3λ
	6.3	Maximum current density	$0.8 \text{ mA/}\mu$	$0.8 \text{ mA/}\mu$

Typical Design Rules (cont)

7.	Via e	(CIF Purple Hatched, Mask #C1)		
	7.1	Size, exactly	3×3	$2\lambda \times 2\lambda$
	7.2	Separation	3	2λ
	7.3	Space to poly edge	4	2λ
	7.4	Space to contact	. 3	2λ
	7.5	Overlap by metal 1	2	λ
	7.6	Overlap by metal 2	2	λ
	7.7	Space to active edge	3	2λ
8.	Meta	1 2 (CIF Orange Hatched, Mask #C2	2)	
	8.1	Width	5	3λ
	8.2	Spacing	5	3λ
	8.3	Bonding pad size	100×100	$100 \ \mu \times 100 \ \mu$
	8.4	Probe pad size	75×75	$75 \mu \times 75 \mu$
	8.5	Bonding pad separation	50	50 μ
	8.6	Bonding to probe pad	30	30 μ
	8.7	Probe pad separation	30	30 μ
	8.8	Pad to circuitry	40	40 μ
	8.9	Maximum current density	$0.8 \text{ mA/}\mu$	$0.8 \text{ mA/}\mu$
9.	Passiv	vation ^f (CIF Purple Dashed, Mask #	·8)	
	9.1	Bonding pad opening	90 × 90	$90 \mu \times 90 \mu$
	9.2	Probe pad opening	65×65	$65 \mu \times 65 \mu$
10.	Metal	2 crossing coincident metal 1 and p	oly ^g	
	10.1	Metal 1 to poly edge spacing		
		when crossing metal 2	2	λ
	10.2	Rule domain	2	λ
11.	Elect	rode (POLY II)h (CIF Purple Hatched	d, Mask #A1)	
	11.1	Width	3	2λ
	11.2	Spacing	3	2λ
	11.3	POLY I overlap of POLY II	2	λ
	11.4	Space to contact	3	2λ

Typical Design Rules (cont) SCMOS Layout Rules - Poly

Rule	Docarintian	Lā	.ambda	
	Description	SCMOS	DEEP	
3.1	Minimum width	2	2	2
3.2	Minimum spacing over field	2	3	3
3.2.a	Minimum spacing over active	2	3	4
3.3	Minimum gate extension of active	2	2	2.5
3.4	Minimum active extension of poly	3	3	4
3.5	Minimum field poly to active	1	1	1

Typical Process Description

Process scenario of major process steps in typical p-well CMOS process^a

1.	Clean wafer	
2.	GROW THIN OXIDE	
3.	Apply photoresist	
4.	PATTERN P-WELL	(MASK #1)
5.	Develop photoresist	
6.	Deposit and diffuse p-type impurities	
7.	Strip photoresist	
8.	Strip thin oxide	
9.	Grow thin oxide	
10.	Apply layer of Si ₃ N ₄	
11.	Apply photoresist	
12.	PATTERN Si ₃ N ₄ (active area definition)	(MASK #2)
13.	Develop photoresist	
14.	Etch Si ₃ N ₄	
15.	Strip photoresist	
	Optional field threshold voltage adjust	
	A.1 Apply photoresist	
	A.2 PATTERN ANTIMOAT IN SUBSTRATE	(MASK #A1)
	A.3 Develop photoresist	
	A.4 FIELD IMPLANT (n-type)	
	A.5 Strip photoresist	•
16.	GROW FIELD OXIDE	
17.	Strip Si ₃ N ₄	
18.	Strip thin oxide	
19.	GROW GATE OXIDE	
20.	POLYSILICON DEPOSITION (POLY I)	
21.	Apply photoresist	
22.	PATTERN POLYSILICON	(MASK #3)
23.	Develop photoresist	
24.	ETCH POLYSILICON	

Typical Process Description (cont)

25.	Strip photoresist Optional steps for double polysilicon process B.1 Strip thin oxide B.2 GROW THIN OXIDE B.3 POLYSILICON DEPOSITION (POLY II)	
	B.4 Apply photoresist	
	B.5 PATTERN POLYSILICON	(MASK #B1)
	B.6 Develop photoresist	
	B.7 ETCH POLYSILICON	
	B.8 Strip photoresist	
	B.9 Strip thin oxide	
26.	Apply photoresist	
27.	PATTERN P-CHANNEL DRAINS AND SOURCES AND	(MASK #4)
	P+ GUARD RINGS (p-well ohmic contacts)	(
28.	Develop photoresist	
29.	p+ IMPLANT	
30.	Strip photoresist	
31.	Apply photoresist	
32.	PATTERN N-CHANNEL DRAINS AND SOURCES AND	(MASK #5)
	N ⁺ GUARD RINGS (top ohmic contact to substrate)	
33.	Develop photoresist	
34.	n ⁺ IMPLANT	
35.	Strip photoresist	
36.	Strip thin oxide	
37.	Grow oxide	
38.	Apply photoresist	
39.	PATTERN CONTACT OPENINGS	(MASK #6)
40.	Develop photoresist	
41.	Etch oxide	
42.	Strip photoresist	
43.	APPLY METAL	
44.	Apply photoresist	
45.	PATTERN METAL	(MASK #7)
46.	Develop photoresist	
47.	Etch metal	

Typical Process Description (cont)

48.	Strip photoresist	
	Optional steps for double metal process	
	C.1 Strip thin oxide	
	C.2 DEPOSIT INTERMETAL OXIDE	
	C.3 Apply photoresist	
	C.4 PATTERN VIAS	(MASK #C1)
	C.5 Develop photoresist	(
	C.6 Etch oxide	
	C.7 Strip photoresist	
	C.8 APPLY METAL (Metal 2)	
	C.9 Apply photoresist	
	C.10 PATTERN METAL	(MASK #C2)
	C.11 Develop photoresist	
	C.12 Etch metal	
	C.13 Strip photoresist	
49.	APPLY PASSIVATION	
50.	Apply photoresist	
51.	PATTERN PAD OPENINGS	(MASK #8)
52.	Develop photoresist	(
53.	Etch passivation	
54.	Strip photoresist	
55.	ASSEMBLE, PACKAGE AND TEST	

Typical Model Parameters

Process parameters for a typical a p-well CMOS process

•	Typical	${\bf Tolerance}^{b}$	Units
Square law	model parameters		
V_{T0} (threshold voltage)			
n-channel (V_{TN0})	0.75	± 0.25	v
p-channel (V_{TP0})	-0.75	± 0.25	v
K'(conduction factor)			
n-channel	24	± 6	$\mu A/V^2$
p-channel	8	± 1.5	μΑ/V ² μΑ/V ²
γ(body effect)			
n-channel	0.8	± 0.4	$V^{1/2}$
p-channel	0.4	± 0.2	$V^{1/2}$
λ(channel length modulation)			
n-channel	0.01	± 50%	V^{-1}
p-channel	0.02	± 50%	V^{-1}
ϕ (surface potential)			
n- and p-channel	0.6	± 0.1	v
Proces	s parameters		
μ (channel mobility)			
n-channel	710		$cm^2/(V \cdot s)$
p-channel	230		cm ² /(V·s
п	Poping ^c		
n ⁺ active	5	±4	10 ¹⁸ /cm ³
p ⁺ active	5	± 4	10 ¹⁷ /cm ³
p-well	5	±2	10 ¹⁶ /cm ³
n-substrate	1	±0.1	10 ¹⁶ /cm ³

Physical feature sizes

Tox (gate oxide thickness)	500	± 100	Å
Total lateral diffusion			
n-channel	0.45	± 0.15	μ
p-channel	0.6	± 0.3	μ
Diffusion depth			,
n+ diffusion	0.45	± 0.15	μ
p ⁺ diffusion	0.6	± 0.3	μ
p-well	3.0	± 30%	μ
Insulating layer s	eparation		
POLY I to POLY II	800	± 100	Å
Metal 1 to Substrate	1.55	± 0.15	μ
Metal 1 to Diffusion	0.925	± 0.25	μ
POLY I to Substrate (POLY I on field oxide)	0.75	± 0.1	μ
Metal 1 to POLY I	0.87	± 0.7	μ
Metal 2 to Substrate	2.7	± 0.25	μ
Metal 2 to Metal I	1.2	± 0.1	μ
Metal 2 to POLY I	2.0	± 0.07	μ

Capacitances d			
C _{OX} (gate oxide capacitance, n- and p-channel)	0.7	±0.1	fF/μ ²
POLY I to substrate, poly in field	0.045	±0.01	fF/μ^2
POLY II to substrate, poly in field	0.045	±0.01	fF/μ^2
Metal 1 to substrate, metal in field	0.025	± 0.005	fF/μ^2
Metal 2 to substrate, metal in field	0.014	± 0.002	fF/μ^2
POLY I to POLY II	0.44	±0.05	fF/μ^2
POLY I to Metal 1	0.04	± 0.01	fF/μ^2
POLY I to Metal 2	0.039	± 0.003	fF/μ^2
Metal 1 to Metal 2	0.035	±0.01	fF/μ^2
Metal 1 to diffusion	0.04	± 0.01	fF/μ^2
Metal 2 to diffusion	0.02	± 0.005	fF/μ^2
n+ diffusion to p-well (junction, bottom)	0.33	±0.17	fF/μ^2
n+ diffusion sidewall (junction, sidewall)	2.6	±0.6	fF/μ
p+ diffusion to substrate (junction, bottom)	0.38	±0.12	fF/μ^2
p+ diffusion sidewall (junction, sidewall)	3.5	±2.0	fF/μ
p-well to substrate (junction, bottom)	0.2	±0.1	fF/μ^2
p-well sidewall (junction, sidewall)	1.6	±1.0	fF/μ
Resistance	es		
Substrate	25	±20%	Ω-cm
p-well	5000	±2500	Ω/\Box
n ⁺ diffusion	35	±25	$\Omega /\!\Box$
p ⁺ diffusion	80	±55	Ω/\Box
Metal	0.003	±25%	Ω/\Box
Poly	25	±25%	Ω/\square
Metal 1-Metal 2 via (3 $\mu \times 3 \mu$ contact)	< 0.1		Ω
Metal 1 contact to POLY I (3 $\mu \times 3 \mu$ contact)	<10		Ω
Metal 1 contact to n+ or p+ diffusion			
$(3 \mu \times 3 \mu \text{ contact})$	<5		Ω

Breakdown voltages, leakage currents, migration currents and operating conditions

Punchthrough voltages (Gate oxide, POLY I to POLY II)	>10	v
Diffusion reverse breakdown voltage	>10	V
p-well to substrate reverse breakdown voltage	>20	V
Metal 1 in field threshold voltage	>10	V
Metal 2 in field threshold voltage	>10	V
Poly-field threshold voltage	>10	V
Maximum operating voltage	7.0	V
n+ diffusion to p-well leakage current	0.25	fA/μ^2
p+ diffusion to substrate leakage current	0.25	fA/μ^2
p-well leakage current	0.25	fA/μ^2
Maximum metal current density	0.8	mA/μ width
Maximum device operating temperature	200	°C

Level 3 Model (n-ch and p-ch)

SPICE MOSFET model parameters of a typical p-well CMOS process (MOSIS^a)

Parameter			
(Level 2 model)	n-channel	p-channel	Units
VTO	0.827	-0.895	v
KP	32.87	15.26	μ A/V ²
GAMMA	1.36	0.879	$V^{1/2}$
PHI	0.6	0.6	V
LAMBDA	1.605E-2	4.709E-2	V^{-1}
CGSO	5.2E-4	4.0E-4	fF/μ width
CGDO	5.2E-4	4.0E-4	fF/μ width
RSH	25	95	Ω /\square
CJ	3.2E-4	2.0E-4	ρ /1 F/μ²
MJ	0.5	0.5	ρ ÆF/μ perimeter
CJSW	9.0E-4	4.5E-4	φ AF/μ perimeter
MJSW	0.33	0.33	
TOX	500	500	Å
NSUB	1.0E16	1.12E14	1/cm ³
NSS	0	0	1/cm ²
NFS	1.235E12	8.79E11	1/cm ²
TPG	1	-1	
XJ	0.4	0.4	μ
LD	0.28	0.28	μ
UO	200	100	$cm^2/(V \cdot s)$
UCRIT	9.99E5	1.64E4	V/cm
UEXP	1.001E-3	0.1534	
VMAX	1.0E5	1.0E5	m/s
NEFF	1.001E-2	1.001E-2	
DELTA	1.2405	1.938	

Typical Model Parameters (cont) BSIM 4 Model (n-ch)

41	MOGO	•	ar <u>a</u> rriotoro (ot				, ,	'	
			SN NMOS (,			LEVEL	=	49
	+VERSION	=	3.1	TNOM	=	27	TOX	=	1.4E-8
	+XJ	=	1.5E-7	NCH	=	1.7E17	VTHO	=	0.6656437
	+K1	=	0.875093	K2	=	-0.0943223	K3	=	25.0562441
	+K3B	=	-8.5140476	WO	=	1.01582E-8	NLX	=	1E-9
	+DVTOW	=	0	DVT1W	=	0	DVT2W	=	0
	+DVTO	=	2.670658	DVT1	=	0.4282172	DVT2	=	-0.1373089
	+00	=	452.3081836	UA	=	3.061716E-13	UB	=	1.515137E-18
	+UC	=	1.166279E-11	VSAT	=	1.682414E5	AO	=	0.6297744
	+AGS	=	0.1384489	во	=	2.579158E-6	B1	=	5E-6
	+KETA	=	-3.615287E-3	A1	=	1.054571E-6	A2	=	0.3379035
	+RDSW	=	1.380341E3	PRWG	=	0.0301426	PRWB	=	0.0106493
	+WR	=	1	WINT	=	2.594349E-7	LINT	=	7.489566E-8
	+XL	=	1E-7	XW	=	0	DWG	=	-9.471353E-9
	+DWB	=	3.537786E-8	VOFF	=	0	NFACTOR	=	1.0754804
	+CIT	=	0	CDSC	=	2.4E-4	CDSCD	=	0
	+CDSCB	=	0	ETAO	=	2.332015E-3	ETAB	=	-1.531255E-4
	+DSUB	=	0.076309	PCLM	=	2.6209353	PDIBLC1	=	1
	+PDIBLC2	=	2.23243E-3	${\tt PDIBLCB}$	=	-0.0436947	DROUT	=	1.0300278
	+PSCBE1	=	6.619472E8	PSCBE2	=	2.968801E-4	PVAG	=	9.970995E-3
	+DELTA	=	0.01	RSH	=	80.9	MOBMOD	=	1
	+PRT	=	0	UTE	=	-1.5	KT1	=	-0.11
	+KT1L	=	0	KT2	=	0.022	UA1	=	4.31E-9
	+UB1	=	-7.61E-18	UC1	=	-5.6E-11	AT	=	3.3E4
	+WL	=	0	WLN	=	1	WW	=	0
	+WWN	=	1	WWL	=	0	LL	=	0
	+LLN	=	1	LW	=	0	LWN	=	1
	+LWL	=	0	CAPMOD	=	2	XPART	=	0.5
	+CGDO	=	2.34E-10	CGSO	=	2.34E-10	CGBO	=	1E-9
	+CJ	=	4.240724E-4	PB	=	0.9148626	MJ	=	0.4416777
	+CJSW	=	3.007134E-10	PBSW	=	0.8	MJSW	=	0.2025106
	+CJSWG	=	1.64E-10	PBSWG	=	0.8	MJSWG	=	0.2025106
	+CF	=	0	PVTHO	=	0.0526696	PRDSW	=	110.1539295
	+PK2	=	-0.0283027	WKETA	=	-0.0191754	LKETA	=	8.469064E-4

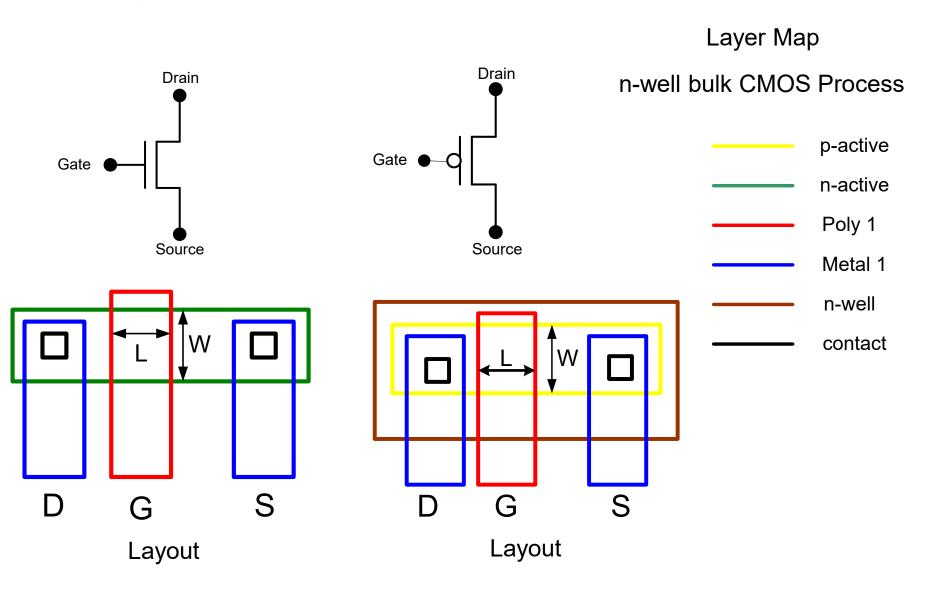
98 parameters in this BSIM Model!

BSIM 4 Model (p-ch)

.MODEL C	MOSP PMOS (LEVEL	=	49
+VERSION	= 3.1	TNOM	=	27	TOX	=	1.4E-8
+XJ	= 1.5E-7	NCH	=	1.7E17	VTHO	=	-0.9633249
+K1	= 0.5600277	K2	=	9.302429E-3	K3	=	7.2192028
+K3B	= -1.0103515	WO	=	1.010628E-8	NLX	=	5.826683E-8
+DVTOW	= 0	DVT1W	=	0	DVT2W	=	0
+DVTO	= 2.2199372	DVT1	=	0.5378964	DVT2	=	-0.1158128
+00	= 220.5729225	UA	=	3.141811E-9	UB	=	1.085892E-21
+UC	= -5.76898E-11	VSAT	=	1.342779E5	AO	=	0.9333822
+AGS	= 0.157364	во	=	9.735259E-7	B1	=	5E-6
+KETA	= -2.42686E-3	A1	=	3.447019E-4	A2	=	0.3701317
+RDSW	= 3E3	PRWG	=	-0.0418484	PRWB	=	-0.0212357
+WR	= 1	WINT	=	3.097872E-7	LINT	=	1.040878E-7
+XL	= 1E-7	XW	=	0	DWG	=	-1.983686E-8
+DWB	= 1.629532E-8	VOFF	=	-0.0823738	NFACTOR	=	0.969384
+CIT	= 0	CDSC	=	2.4E-4	CDSCD	=	0
+CDSCB	= 0	ETAO	=	0.4985496	ETAB	=	-0.0653358
+DSUB	= 1	PCLM	=	2.1142057	PDIBLC1	=	0.0256688
+PDIBLC2	= 3.172604E-3	PDIBLCB	=	-0.0511673	DROUT	=	0.1695622
+PSCBE1	= 1.851867E10	PSCBE2	=	1.697939E-9	PVAG	=	0
+DELTA	= 0.01	RSH	=	103.6	MOBMOD	=	1
+PRT	= 0	UTE	=	-1.5	KT1	=	-0.11
+KT1L	= 0	KT2	=	0.022	UA1	=	4.31E-9
+UB1	= -7.61E - 18	UC1	=	-5.6E-11	AT	=	3.3E4
+WL	= 0	WLN	=	1	WW	=	0
+WWN	= 1	WWL	=	0	LL	=	0
+LLN	= 1	LW	=	0	LWN	=	1
+L WL	= 0	CAPMOD	=	2	XPART	=	0.5
+CGDO	= 3.09E-10	CGSO	=	3.09E-10	CGBO	=	1E-9
+CJ	= 7.410008E-4	PB	=	0.9665307	MJ	=	0.4978642
+CJSW	= 2.487127E-10	PBSW	=	0.99	MJSW	=	0.3877813
+CJSWG	= 6.4E-11	PBSWG	=	0.99	MJSWG	=	0.3877813
+CF	= 0	PVTHO	=	5.98016E-3	PRDSW	=	14.8598424
+PK2	= 3.73981E-3	WKETA	=	2.870507E-3	LKETA	=	-4.823171E-3
_							

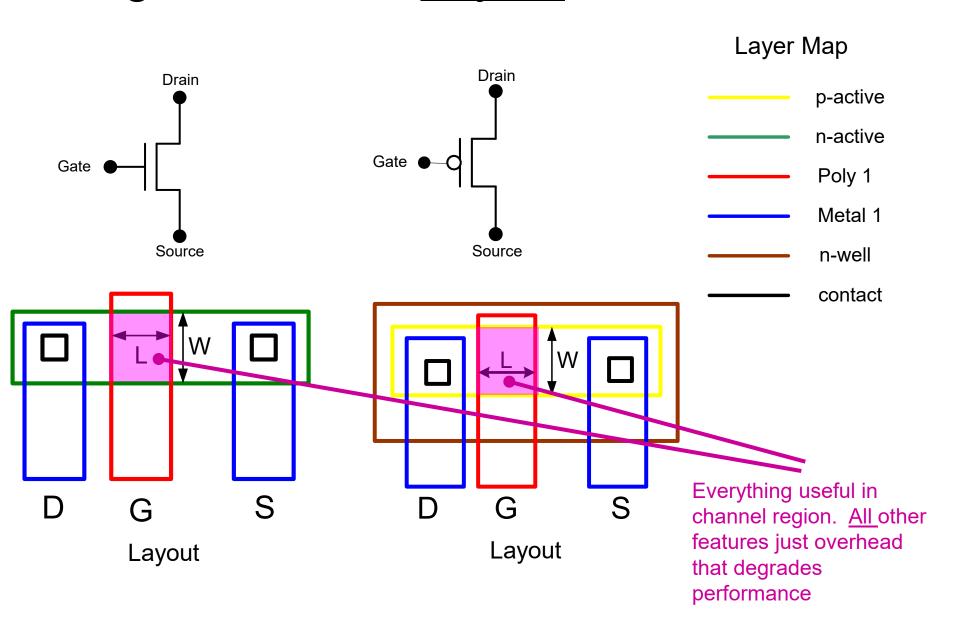
-

Technology Files

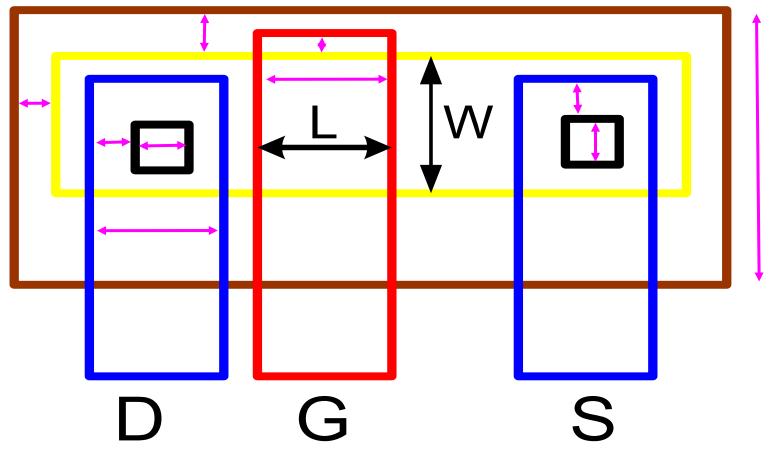

Design Rules

- Process Flow (Fabrication Technology) (will discuss next)
- Model Parameters (will discuss in substantially more detail after device operation and more advanced models are introduced)

Design Rules


- Give minimum feature sizes, spacing, and other constraints that are acceptable in a process
- Very large number of devices can be reliably made with the design rules of a process
- Yield and performance unpredictable and often low if rules are violated
- Compatible with design rule checker in integrated toolsets

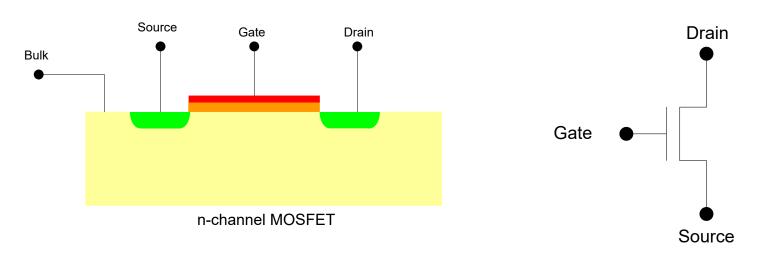
Design Rules and Layout - consider transistors



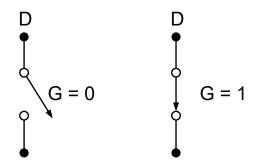
Layout always represented in a top view in two dimensions

Design Rules and Layout – consider transistors

Design Rules



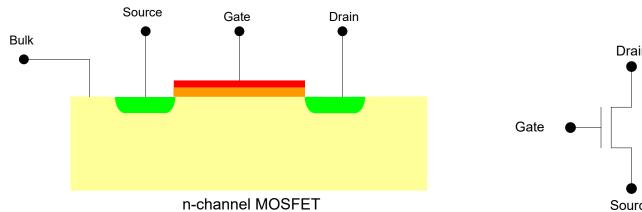
Design rules give minimum feature sizes and spacings

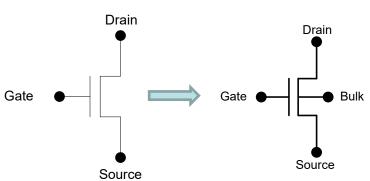

Designers generally do layouts to minimize size of circuit subject to design rule constraints (because yield, cost, and performance usually improve)

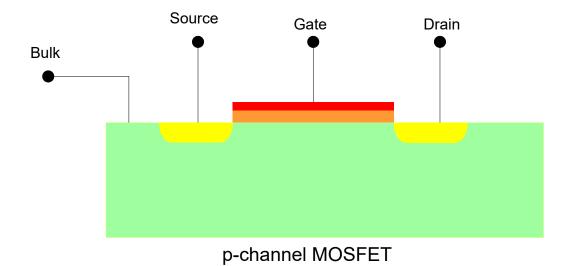
MOS Transistor

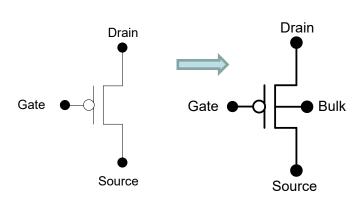
Qualitative Discussion of n-channel Operation

Equivalent Circuit for n-channel MOSFET

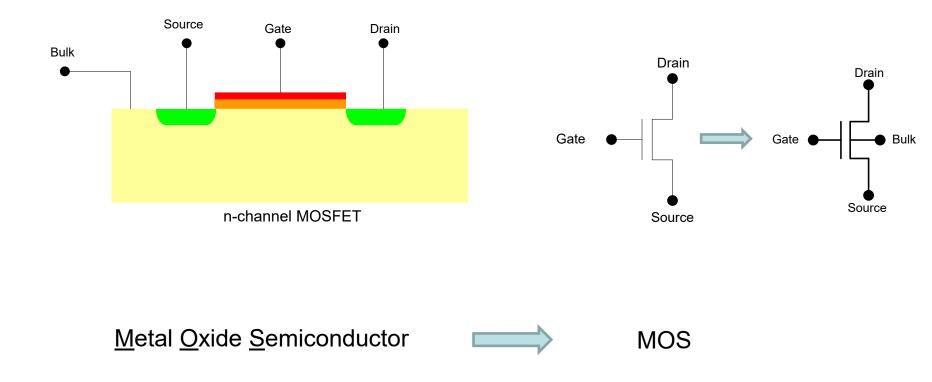


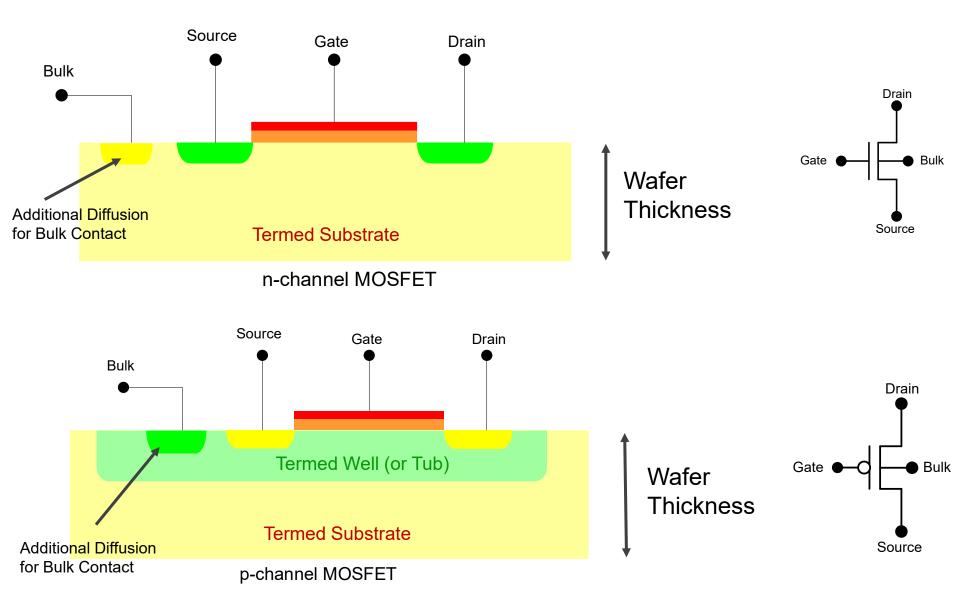

- Source assumed connected to (or close to) ground
- V_{GS}=0 denoted as Boolean gate voltage G=0
 V_{GS}=V_{DD} denoted as Boolean gate voltage G=1
 - Boolean G is relative to ground potential


This is the first model we have for the n-channel MOSFET!

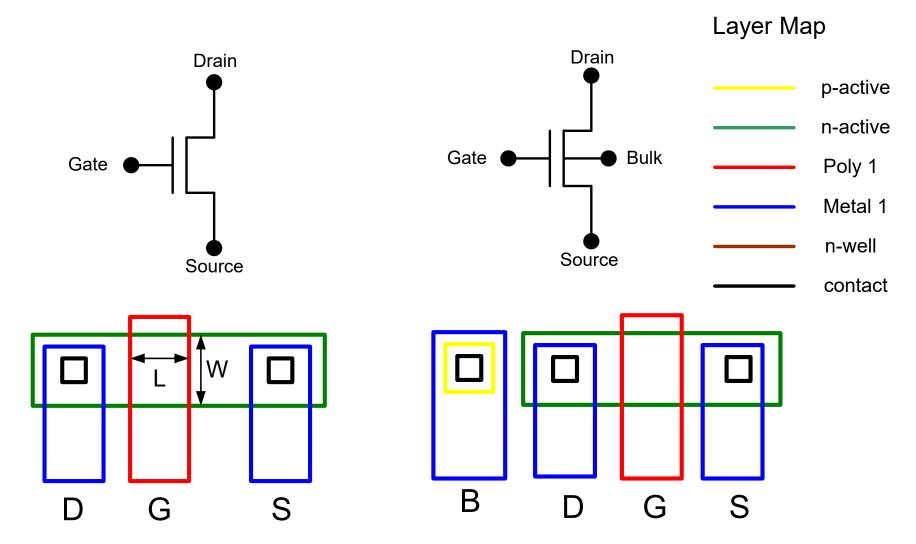

Ideal switch-level model

MOS Transistor



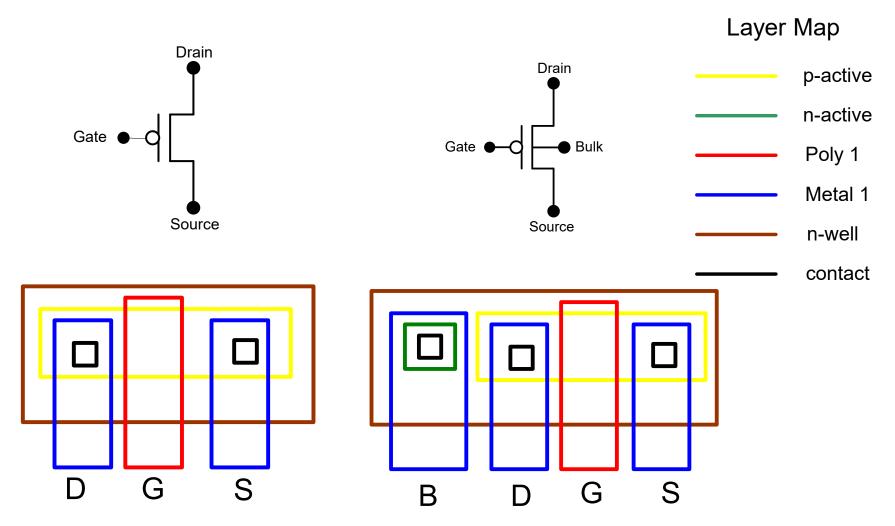


MOS Transistor Nomenclature

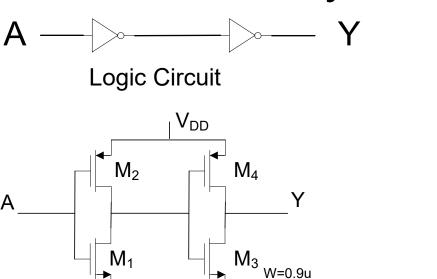


Early processes used metal for the gate, today metal is seldom used but the term MOS transistor is standard even though the gate is no longer metal

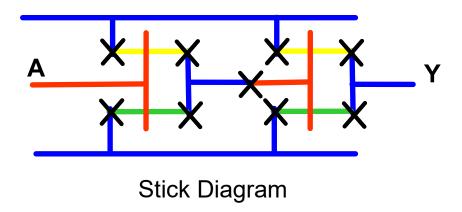
MOS Transistor in Bulk n-well CMOS Process

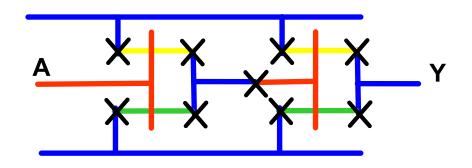


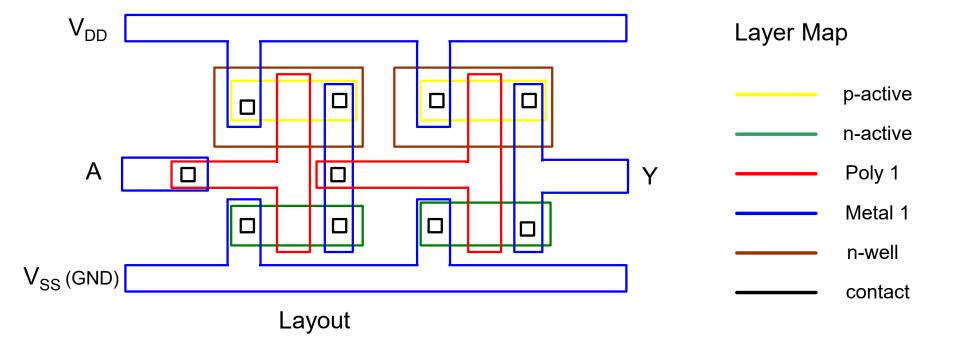
Design Rules and Layout — consider transistors

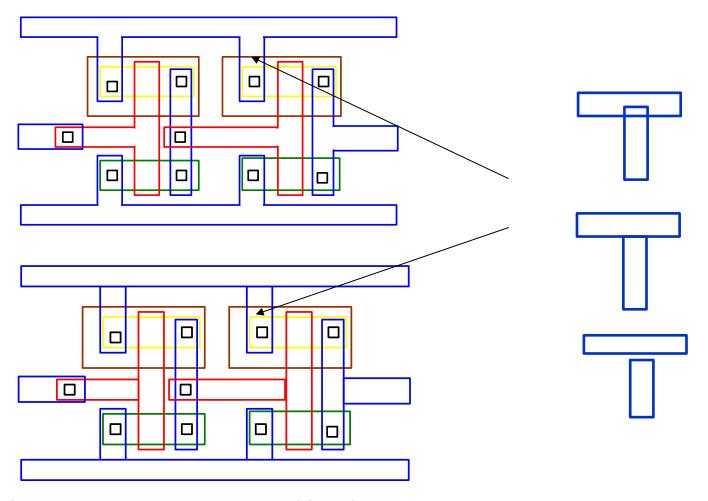

- Bulk connection needed
- Single bulk connection can often be used for several (many) transistors

Design Rules and Layout – consider transistors

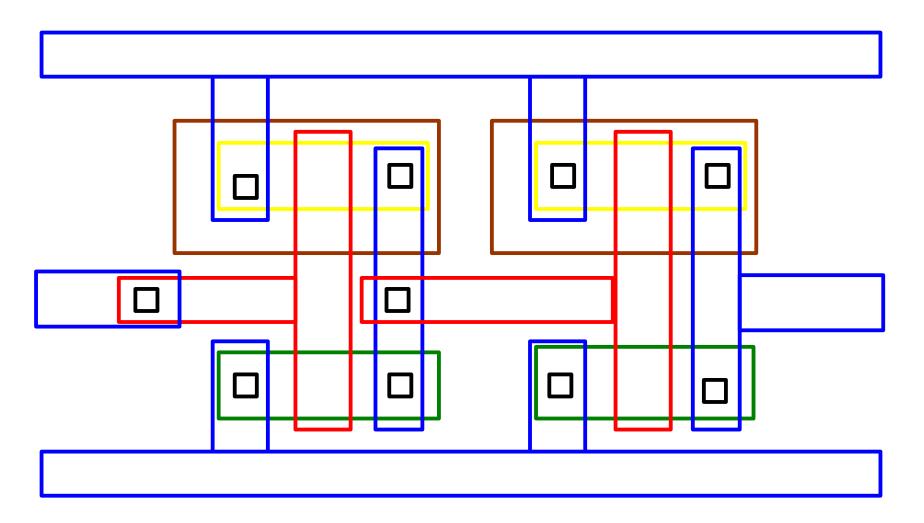

- Bulk connection needed
- Single bulk connection can often be used for several (many) transistors if they share the same well

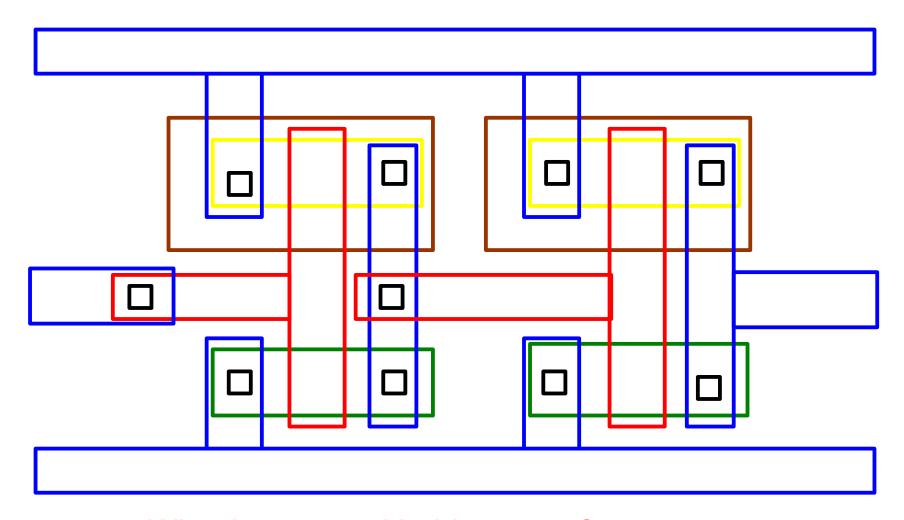

Design Rules and Layout (example)

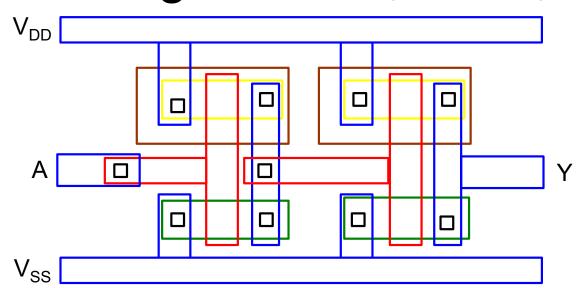


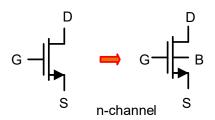

Circuit Schematic (Including Device Sizing)

L=0.6u



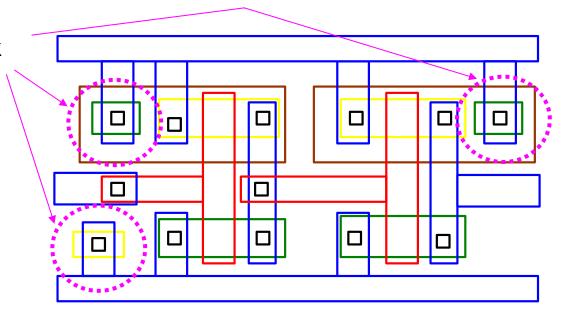


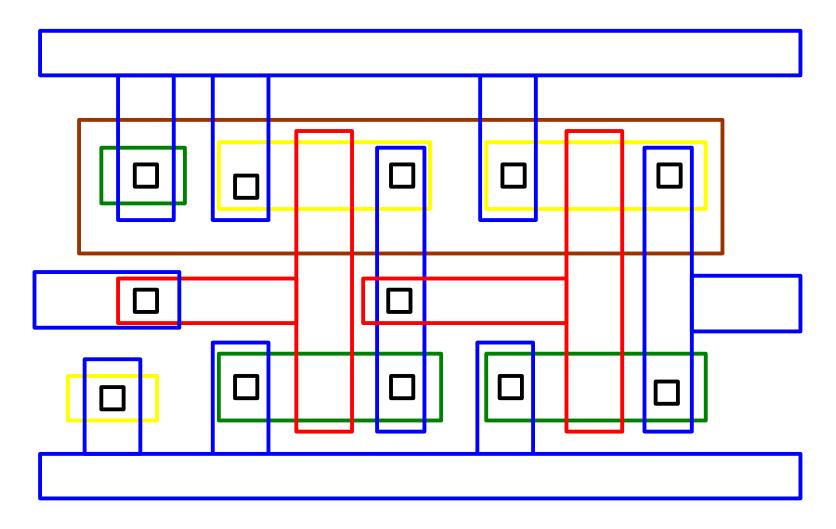

- Polygons in Geometric Description File (GDF) merged (when driving the pattern generator that makes the masks)
- Separate rectangles generally more convenient to represent
- Good practice to overlap rectangles to avoid break (though such an error would likely be caught with DRC)

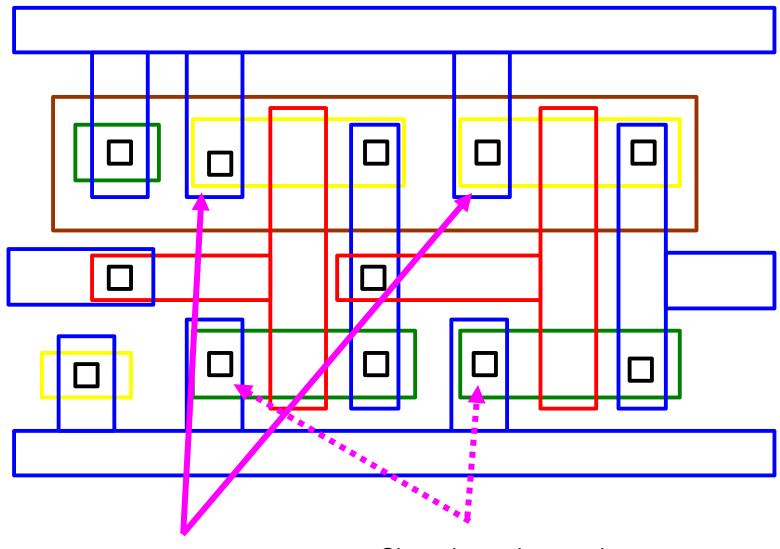


- Design rules must be satisfied throughout the design
- DRC runs incrementally during layout in most existing tools to flag most problems
- DRC can catch layout design rule errors but not circuit connection errors

What is wrong with this layout?
Bulk connections missing!






Actually 4-terminal device

- Note diffusions needed for bulk connections
- Note n-well connections increase area a significant amount
- Note n-wells are both connected to V_{DD} in this circuit

Layout with shared n-well reduces area

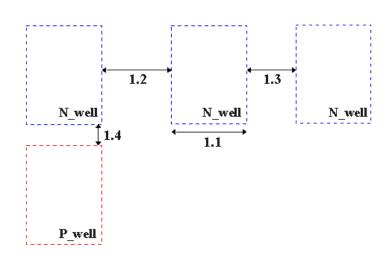
Shared p-active can be combined to reduce area

Shared n-active can be combined to reduce area

Design Rules

- Design rules can be given in absolute dimensions for every rule
- Design rules can be parameterized and given relative to a parameter
 - Makes movement from one process to another more convenient
 - Easier for designer to remember
 - Some penalty in area efficiency
 - Often termed λ-based design rules
 - Typically λ is $\frac{1}{2}$ the minimum feature size in a process

Technology code with link to layer map	Layers
<u>SCNE</u>	<u>N_well, Active, N_select, P_select, Poly, Poly2, Contact, Metal1, Via, Metal2, Glass</u>
<u>SCNA</u>	<u>N_well, Active, N_select, P_select, Poly, Poly2, Contact, Pbase, Metal1, Via, Metal2, Glass</u>
<u>SCNPC</u>	<u>N_well, Active, N_select, P_select, Poly_cap, Poly,</u> <u>Contact, Metal1, Via, Metal2, Glass</u>
<u>SCN3M</u>	N_well, <u>Active</u> , <u>N_select</u> , <u>P_select</u> , <u>Poly, Silicide block</u> (<u>Aqilent/HP only</u>), <u>Hi_Res_Implant</u> , <u>Contact</u> , <u>Metal1</u> , <u>Via, Metal2</u> , <u>Via2</u> , <u>Metal3</u> , <u>Glass</u>
SCN3ME (<u>N_well, Active, N_select, P_select, Poly, Poly2,</u> <u>Hi_Res_Implant, Contact, Metal1, Via, Metal2, Via2,</u> <u>Metal3, Glass</u>


Typical Technology

SCMOS Layout Rules - Well

Rule	Docarintian	Lambda		
	Description		SUBM	DEEP
1.1	Minimum width	10	12	12
1.2	Minimum spacing between wells at different potential	9 ¹	18 ²	18
1.3	Minimum spacing between wells at same potential	6 ³	6 4	6
1.4	Minimum spacing between wells of different type (if both are drawn)	0	0	0

Exceptions for AMIS C30 0.35 micron process:

⁴ Use lambda=11 for rule 1.3 only when using SCN4M_SUBM or SCN4ME_SUBM

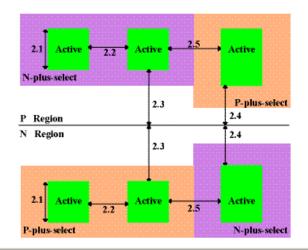
¹ Use lambda=16 for rule 1.2 only when using SCN4M or SCN4ME

 $^{^{2}}$ Use lambda=21 for rule 1.2 only when using SCN4M_SUBM or SCN4ME_SUBM

 $^{^3}$ Use lambda=8 for rule 1.3 only when using SCN4M or SCN4ME

Technology code with link to layer map	Layers
<u>SCNE</u>	<u>N_well, Active, N_select, P_select, Poly, Poly2, Contact, Metal1, Via, Metal2, Glass</u>
<u>SCNA</u>	<u>N_well, Active, N_select, P_select, Poly, Poly2, Contact, Pbase, Metal1, Via, Metal2, Glass</u>
<u>SCNPC</u>	<u>N_well, Active, N_select, P_select, Poly_cap, Poly,</u> <u>Contact, Metal1, Via, Metal2, Glass</u>
<u>SCN3M</u>	N <u>well</u> , <u>Active</u> , <u>N</u> <u>select</u> , <u>P</u> <u>select</u> , <u>Poly</u> , <u>Silicide block</u> (<u>Aqilent/HP only</u>), <u>Hi_Res_Implant</u> , <u>Contact</u> , <u>Metal1</u> , <u>Via</u> , <u>Metal2</u> , <u>Via2</u> , <u>Metal3</u> , <u>Glass</u>
<u>SCN3ME</u>	<u>N_well, Active, N_select, P_select, Poly, Poly2,</u> <u>Hi_Res_Implant, Contact, Metal1, Via, Metal2, Via2,</u> <u>Metal3, Glass</u>

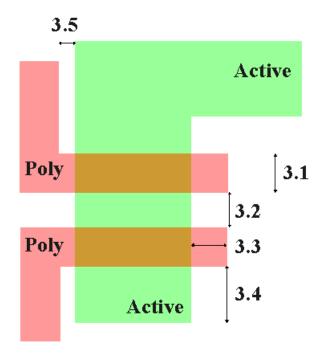
П


Т

SCMOS Layout Rules - Active

Rule	Danawiakian.	Lambda		
	Description		SUBM	DEEP
2.1	Minimum width	3 *	3 *	3
2.2	Minimum spacing	3	3	3
2.3	Source/drain active to well edge	5	6	6
2.4	Substrate/well contact active to well edge	3	3	3
2.5	Minimum spacing between non-abutting active of different implant. Abutting active ("split-active") is illustrated under <u>Select Layout Rules</u> .	4	4	4

* Note: For analog and critical digital designs, MOSIS recommends the following minimum MOS channel widths (active under poly) for AMIS designs. Narrower devices, down to design rule minimum, will be functional, but their electrical characteristics will not scale, and their performance is not predictable from MOSIS SPICE parameters.


Process	Design Technology	Design Lambda (micrometers)	Minimum Width (lambda)
AMI_ABN	SCNA, SCNE	0.80	5
AMI_C5F/N	SCN3M, SCN3ME	0.35	9
AMI_C5F/N	SCN3M_SUBM, SCN3ME_SUBM	0.30	10

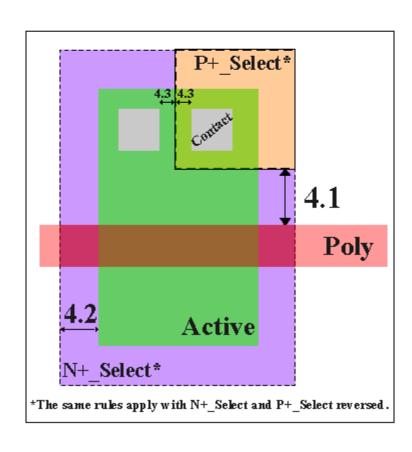
	Technology code with link to layer map	Layers
	<u>SCNE</u>	<u>N_well, Active, N_select, P_select, Poly, Poly2, Contact, Metal1, Via, Metal2, Glass</u>
	<u>SCNA</u>	<u>N_well, Active, N_select, P_select, Poly, Poly2, Contact, Pbase, Metal1, Via, Metal2, Glass</u>
	<u>SCNPC</u>	<u>N_well, Active, N_select, P_select, Poly_cap, Poly,</u> <u>Contact, Metal1, Via, Metal2, Glass</u>
	<u>SCN3M</u>	N_well, Active, N_select, P_select, Poly, Silicide block (Aqilent/HP only), <u>Hi_Res_Implant, Contact, Metal1,</u> <u>Via, Metal2, Via2, Metal3, Glass</u>
+	SCN3ME	N_well, <u>Active</u> , <u>N_select</u> , <u>P_select</u> , <u>Poly</u> , <u>Poly2</u> , <u>Hi_Res_Implant</u> , <u>Contact</u> , <u>Metal1</u> , <u>Via</u> , <u>Metal2</u> , <u>Via2</u> , <u>Metal3</u> , <u>Glass</u>

SCMOS Layout Rules - Poly

Rule	D	Lambda			
	Description	SCMOS	SUBM	DEEP	
3.1	Minimum width	2	2	2	
3.2	Minimum spacing over field	2	3	3	
3.2.a	Minimum spacing over active	2	3	4	
3.3	Minimum gate extension of active	2	2	2.5	
3.4	Minimum active extension of poly	3	3	4	
3.5	Minimum field poly to active	1	1	1	

Technology code with link to layer map	Layers
<u>SCNE</u>	<u>N_well, Active, N_select, P_select, Poly, Poly2, Contact, Metal1, Via, Metal2, Glass</u>
<u>SCNA</u>	<u>N_well, Active, N_select, P_select, Poly, Poly2, Contact, Pbase, Metal1, Via, Metal2, Glass</u>
<u>SCNPC</u>	<u>N_well, Active, N_select, P_select, Poly_cap, Poly,</u> <u>Contact, Metal1, Via, Metal2, Glass</u>
<u>SCN3M</u>	N_well, Active, N_select, P_select, Poly, Silicide block (Aqilent/HP only), <u>Hi_Res_Implant, Contact, Metal1,</u> <u>Via, Metal2, Via2, Metal3, Glass</u>
<u>SCN3ME</u>	<u>N_well, Active, N_select, P_select, Poly, Poly2, Hi_Res_Implant, Contact, Metal1, Via, Metal2, Via2, Metal3, Glass</u>

П


Т

Select – Active(moat) Concepts

- Note that there is no n-active or p-active masks
- n-channel devices which need n-active are created by overlaying active with n-select
- p-channel devices which need p-active are created by overlaying active with p-select
- n-select and p-select masks are somewhat larger than the desired n-active and p-active regions

SCMOS Layout Rules - Select

Rule	Do contestion	Lambda		
	Description		SUBM	DEEP
4.1	Minimum select spacing to channel of transistor to ensure adequate source/drain width	3	3	3
4.2	Minimum select overlap of active	2	2	2
4.3	Minimum select overlap of contact	1	1	1.5
4.4	Minimum select width and spacing (Note: P-select and N-select may be coincident, but must not overlap) (not illustrated)	2	2	4

Pictorial Description of Typical Design Rules

Class WEB site:

Reference material

- Complete CMOS process flow (<u>PowerPoint file</u>)
- Pictorial Design Rules (Most basic rules in one PDF files)
- NXP Thyristor Application Note
- ON Thyristor Application Note
- National Thysistor Application Note
- Selected Data Sheets
 - □ EDII 1000 D-+- Cl--+

Stay Safe and Stay Healthy!

End of Lecture 8